ayuda con sistemas de ecuaciones con n incognitas y n-1 ecuaciones.
hola amigos del foro:
Acabo de comprarme mi CP300+ y actualmente estoy cursando el curso de espacios ectoriales y tranformaciones lineales y necesito que me ayuden a resolver sistemas de ecuaciones cn n incognitas y n-1 ecuaciones con mi CP.
o si exite algun programa para eso. se los agradesco de antemano.
mi correo es angel.23.xx AT gmail.com.
Ayuda Urgente
Started by
angelXXIII
, Oct 11 2007 12:19 AM
3 replies to this topic
#1
Posted 11 October 2007 - 12:19 AM
#2
Posted 11 October 2007 - 02:05 AM
For the english speaking people:
AngelXXII is asking for help as he recently bought a new CP300+ and he wants to solve unconsistent linear systems (that's n guesses and n-1 equations).
Bienvenido al foro.
Creo que estas equivocado. No puedes resolver un sistema inconsistente (menos ecuaciones que incognitas) a menos que poseas una "ecuacion" suplementaria (para que el sistema se complete) que relacione mas variables como puede ser un grafico, una tabla o algun tipo de diagrama para resolver el sistema usando un metodo iterativo manual.
En cuanto a resolver sistemas la calculadora lo puede hacer por 3 formas distintas, 2 de ellas usando matrices y la otra simbolicamente (CAS). consulta tu manual en el capitulo de operaciones con matrices
Welcome to the UCF
I think you're wrong, you can't solve an uncomplete linear system (those that have less equations than guesses). The only way is to get another "equation" as a graph, diagram, or table that relates two or more variables involved in the system (in order to fill the system and make it able to solve). then you can solve the system iteratively using the calculator.
About solving systems with the calc, there are no need to install any program, you can do it in 3 ways, 2 via matrix algebra and the another one using the symbolic notation (CAS) of the calc. see your users guide on the matrix algebra chapter.
AngelXXII is asking for help as he recently bought a new CP300+ and he wants to solve unconsistent linear systems (that's n guesses and n-1 equations).
Bienvenido al foro.
Creo que estas equivocado. No puedes resolver un sistema inconsistente (menos ecuaciones que incognitas) a menos que poseas una "ecuacion" suplementaria (para que el sistema se complete) que relacione mas variables como puede ser un grafico, una tabla o algun tipo de diagrama para resolver el sistema usando un metodo iterativo manual.
En cuanto a resolver sistemas la calculadora lo puede hacer por 3 formas distintas, 2 de ellas usando matrices y la otra simbolicamente (CAS). consulta tu manual en el capitulo de operaciones con matrices
Welcome to the UCF
I think you're wrong, you can't solve an uncomplete linear system (those that have less equations than guesses). The only way is to get another "equation" as a graph, diagram, or table that relates two or more variables involved in the system (in order to fill the system and make it able to solve). then you can solve the system iteratively using the calculator.
About solving systems with the calc, there are no need to install any program, you can do it in 3 ways, 2 via matrix algebra and the another one using the symbolic notation (CAS) of the calc. see your users guide on the matrix algebra chapter.
#3
Posted 15 October 2007 - 07:23 PM
I think angelXXIII refears to use parameters:
number of parameters = guesses - equations = n - (n-1) = 1
for example:
x+y+z=6
x-y+z=2
(3 guesses and 3-1=2 equations) so for example I take z=a (a is a parameter)
x+y=6-a
x-y=2-a
(2 guesses and 2 equations) so you can solve the sistem wich a is a parameter
in the CP:
solve({x+y+z=6,x-y+z=2},{x,y})
number of parameters = guesses - equations = n - (n-1) = 1
for example:
x+y+z=6
x-y+z=2
(3 guesses and 3-1=2 equations) so for example I take z=a (a is a parameter)
x+y=6-a
x-y=2-a
(2 guesses and 2 equations) so you can solve the sistem wich a is a parameter
in the CP:
solve({x+y+z=6,x-y+z=2},{x,y})
#4
Posted 16 October 2007 - 01:31 AM
Yes.. but the last system is still a complete system (2x2) a symbolic one.
0 user(s) are reading this topic
0 members, 0 guests, 0 anonymous users