Jump to content



Photo
- - - - -

A fast prime factorizing program for Casio fx-5800P

fx-5800P

  • Please log in to reply
7 replies to this topic

#1 secutor

secutor

    Newbie

  • Members
  • Pip
  • 3 posts
  • Gender:Male

  • Calculators:
    CASIO fx-CG20
    CASIO fx-CG50
    CASIO fx-9750GII
    CASIO fx-5800P
    CASIO fx-991EX

Posted 20 June 2018 - 10:59 AM

"PRIME FACTORS"
{0}→List X:1→I
 "N"?→N
While Frac(N÷2)=0
N÷2→N
2→List X[I]
Isz I
WhileEnd
While Frac(N÷3)=0
N÷3→N
3→List X[I]

Isz I

WhileEnd

5→F

While F√(N)

While Frac(N÷F)=0

N÷F→N

F→List X[I]

Isz I

WhileEnd

F+2→F

While Frac(N÷F)=0

N÷F→N

F→List X[I]

Isz I

WhileEnd

F+4→F

WhileEnd

N≠1=>N→List X[I]

If N=1

Then I-1→I

IfEnd

Cls

For 1→J To I

List X[J]

Next

If I=1

Then "           PRIME"

Else

"SEE MODE 3:SD"

IfEnd

 

-------------------------------------

 

Example:

N = 6666666667

 

19

1627

215659

The result will also be available in MODE 3:SD

 

Takes about 25 s

 

---------------------------------------

 

N=215659

 

215659

PRIME


Edited by secutor, 20 June 2018 - 11:06 AM.


#2 sentaro21

sentaro21

    Casio Freak

  • Members
  • PipPipPipPip
  • 207 posts
  • Gender:Male
  • Location:JAPAN

  • Calculators:
    FX-603P fx-4800P fx-5800P
    CFX-9850GC PLUS
    fx-9860G
    fx-9860GII
    fx-9860GII-2
    fx-9860GII-2 SD
    fx-CG10
    fx-CG20
    fx-CG50
    HP-Prime
    HP 50G
    TI-Nspire CX CAS
    TI-84+CE

Posted 21 June 2018 - 08:13 AM

Hi,
The transfer course of the program,
copy your text program to CcEditor(few corrections)-> CcLinker -> fx-5800P
and run program,
This is the fastest by prime factorizing program of fx-5800P which I have used before. :D
 
Thanks!!


#3 secutor

secutor

    Newbie

  • Members
  • Pip
  • 3 posts
  • Gender:Male

  • Calculators:
    CASIO fx-CG20
    CASIO fx-CG50
    CASIO fx-9750GII
    CASIO fx-5800P
    CASIO fx-991EX

Posted 21 June 2018 - 03:06 PM

 

Hi,
The transfer course of the program,
copy your text program to CcEditor(few corrections)-> CcLinker -> fx-5800P
and run program,
This is the fastest by prime factorizing program of fx-5800P which I have used before. :D
 
Thanks!!

 

Hope that the CCLinker

 

Thank you for telling about the CcLinker dongle, that's exciting news. I will contact Takumako, hopefully it will be possible for him to send to Europe.


Edited by secutor, 21 June 2018 - 03:07 PM.


#4 slugrustle

slugrustle

    Newbie

  • Members
  • Pip
  • 8 posts
  • Gender:Not Telling

  • Calculators:
    fx-5800P
    fx-9860GII SD

Posted 24 November 2018 - 04:01 PM

Nice work! Is this wheel factorization with a basis of 2, 3, and 5?

 

And thank you for mentioning the CcLinker dongle.



#5 slugrustle

slugrustle

    Newbie

  • Members
  • Pip
  • 8 posts
  • Gender:Not Telling

  • Calculators:
    fx-5800P
    fx-9860GII SD

Posted 12 December 2018 - 04:43 AM

I extended the wheel factorization to a basis of 2, 3, 5, and 7 and added user input validation and output display in the following two routines. The text listings come from Takumako's CcEditor. See https://cclinker.web.fc2.com/

 

WFSUB

E+1→E↵
B→Z[E]↵
Do↵
	D→A↵
	Z[E+11]+1→Z[E+11]↵
	A÷B→D↵
LpWhile Frac(D)=0↵
Int(√(A))→C↵
Return↵

FACTOR

0→DimZ↵
22→DimZ↵
"NUMBER"?→F↵
If F<1 Or F≧1x₁₀10↵
	Then "NUMBER□MUST□BE□□≧1□ And <1x₁₀10"↵
	Stop↵
IfEnd↵
If F≠Int(F)↵
	Then "NUMBER□MUST□BE□□AN□INTEGER"↵
	Stop↵
IfEnd↵
For 1→E To 22↵
	0→Z[E]↵
Next↵
1→Z[1]↵
1→Z[12]↵
1→E↵
F→A↵
Int(√(A))→C↵
2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
3→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
5→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
7→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
11→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
While 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+8→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+8→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+6→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+4→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+10→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+2→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
	B+10→B:A÷B→D:Frac(D)=0⇒Prog "WFSUB":B>C⇒Goto 1↵
WhileEnd↵
Lbl 1↵
If A>1↵
	Then E+1→E↵
	A→Z[E]↵
	1→A↵
	1→Z[E+11]↵
IfEnd↵
Int(E÷3)→D↵
E-3xD>0⇒D+1→D↵
1→C↵
Lbl 2↵
Cls↵
Locate 1,1,F↵
Locate 12,1,C↵
Locate 13,1,":"↵
Locate 14,1,D↵
3x(C-1)+1→B↵
Locate 1,2,Z[B]↵
Locate 11,2,"^("↵
Locate 13,2,Z[B+11]↵
Locate 16,2,")"↵
If B+1≦E↵
	Then Locate 1,3,Z[B+1]↵
	Locate 11,3,"^("↵
	Locate 13,3,Z[B+12]↵
	Locate 16,3,")"↵
IfEnd↵
If B+2≦E↵
	Then Locate 1,4,Z[B+2]↵
	Locate 11,4,"^("↵
	Locate 13,4,Z[B+13]↵
	Locate 16,4,")"↵
IfEnd↵
While 1↵
	Getkey→A↵
	If A=34 Or A=73↵
		Then Cls↵
		"DONE"↵
		Stop↵
	IfEnd↵
	If A=84 Or A=86 Or A=77 Or A=47↵
		Then C+1→C↵
		C>D⇒1→C↵
		Goto 2↵
	IfEnd↵
	If A=83 Or A=85 Or A=67↵
		Then C-1→C↵
		C<1⇒D→C↵
		Goto 2↵
	IfEnd↵
WhileEnd↵

FACTOR can factorize 6666666667 in 20 seconds on the fx-5800P, but this number has some small factors which makes the trial division go more quickly. The worst-case input is 9999999769, which takes 18 minutes and 22 seconds to "factor"; this is the largest prime number less than 1x₁₀10.

 

I wrote the following test code in C++, and my computer is more than halfway done testing the factorization routine for all inputs on the range [1,9999999999].

#include <cinttypes>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <stdexcept>

/**
 * Calculates the integer square root of a 64 bit unsigned number.
 * From http://www.codecodex.com/wiki/Calculate_an_integer_square_root
 * with stylistic modifications and extension to 64 bits.
 */
uint64_t isqrt64(const uint64_t &number)
{
  uint64_t root = 0ull;
  uint64_t remainder = number;
  uint64_t place = 0x4000000000000000ull;

  while (place > remainder) place >>= 2u;

  while (place != 0ull)
  {
    if (remainder >= (root + place))
    {
      remainder -= root + place;
      root += place << 1u;
    }
    root >>= 1u;
    place >>= 2u;
  }

  return root;
}

/**
 * Test function.
 * Returns true if number is prime and false otherwise.
 */
bool isPrime(const uint64_t &number)
{
  if (number == 0ull) return false;
  if ((number == 1ull) | (number == 2ull)) return true;
  if ((number & 1ull) == 0ull) return false;

  uint64_t max_prime = isqrt64(number) + 1ull;
  for (uint64_t test = 3ull; test <= max_prime; test += 2ull)
  {
    if (number % test == 0ull) return false;
  }

  return true;
}

/**
 * Simulating the variables in the Casio fx-5800P with
 * globals. To maintain similarity, Z_[0] is not used.
 */
double A;
double B;
double C;
double D;
double E;
double F;
double G;
double H;
double I;
double J;
double K;
double L;
double M;
double N;
double O;
double P;
double Q;
double R;
double S;
double T;
double U;
double V;
double W;
double X;
double Y;
double Z;
double Z_[23];

/**
 * Implements the Casio fx-5800P Frac( function using
 * the C++ standard library.
 */
inline double Frac(const double &number)
{
  double scratch;
  return std::modf(number, &scratch);
}

/**
 * Subroutine of WHEELFAC()
 * Call with B a known factor of A.
 * Pulls all powers of B out of A and stores
 * B as a new factor as specified below:
 *
 * 1. E holds number of factors (ignoring powers)
 *    and must lie on the range [1,11].
 *
 *    a. E is limited to 11 because 
 *       1 * 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29
 *       is the largest set of unique factors whose
 *       product is less than or equal to 10000000000, the
 *       largest number in the range represented as exact
 *       integers in the fx-5800P.
 *
 * 2. Z_[E] holds B.
 * 
 * 3. Z_[E + 11] holds the highest power of B
 *    that is a factor of A.
 *
 * WFSUB modifies A, C, D, E, and Z_[1] through Z_[22].
 * It uses but does not modify B.
 */
void WFSUB(void)
{
  E = E + 1.0;
  if (E > 11.0) { std::printf("\nERROR: ran out of factor storage space\n\n"); A = 1.0; return; }
  Z_[static_cast<uint16_t>(E)] = B;

  do
  {
    A = D;
    Z_[static_cast<uint16_t>(E + 11.0)] = Z_[static_cast<uint16_t>(E + 11.0)] + 1.0;
    D = A / B;
  } while (Frac(D) == 0.0);
  
  C = std::trunc(std::sqrt(A));
  return;
}

/**
 * Wheel factorization with a basis of 2, 3, 5, and 7.
 * Stores factors of A in Z_[1] through Z_[22] per the
 * comment above WFSUB.
 * Modifies, A, B, C, D, E, and Z_[1] through Z_[22].
 * Calls WFSUB.
 */
void WHEELFAC(void)
{
  for (E = 1.0; E <= 22.0; E = E + 1.0) Z_[static_cast<uint16_t>(E)] = 0.0;
  Z_[1] = 1.0;
  Z_[12] = 1.0;
  E = 1.0;
  C = std::trunc(std::sqrt(A));
  
  B =  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
  B =  3.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
  B =  5.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
  B =  7.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
  B = 11.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
  
  while (true)
  {
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  8.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  8.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  6.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  4.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B + 10.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B +  2.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
    B = B + 10.0; D = A / B; if (Frac(D) == 0.0) WFSUB(); if (B > C) goto one;
  }
  
  one: 
  if (A > 1.0)
  {
    E = E + 1.0;
    Z_[static_cast<uint16_t>(E)] = A;
    A = 1.0;
    Z_[static_cast<uint16_t>(E + 11.0)] = 1.0;
  }
  
  return;
}

/**
 * Test the WHEELFAC() routine.
 * Take and validate user input to determine the range of numbers
 * used during testing.
 * The stride argument facilitates testing a large number range
 * by running multiple instances of this program in parallel.
 */
int main(int argc, char *argv[])
{
  std::printf("cmdline arguments: [start] [end] [stride]\n");
  std::printf("all arguments required. must be positive integers.\n\n");

  if (argc != 4)
  {
    std::printf("ERROR: must run with 3 arguments.\n\n");
    return 0;
  }

  int64_t istart;
  try { istart = std::stoll(argv[1]); }
  catch (const std::out_of_range &e)
  {
    std::printf("ERROR: start argument exceeds range of int64\n");
    std::printf("       pick start on range [1,9999999999]\n\n");
    return 0;
  }
  catch (const std::invalid_argument &e)
  {
    std::printf("ERROR: could not convert start argument to integer\n\n");
    return 0;
  }
  if ((istart < 1ll) | (istart > 9999999999ll))
  {
    std::printf("ERROR: start argument out of allowed range [1,9999999999]\n\n");
    return 0;
  }

  int64_t iend;
  try { iend = std::stoll(argv[2]); }
  catch (const std::out_of_range &e)
  {
    std::printf("ERROR: end argument exceeds range of int64\n");
    std::printf("       pick end on range [1,9999999999]\n\n");
    return 0;
  }
  catch (const std::invalid_argument &e)
  {
    std::printf("ERROR: could not convert end argument to integer\n\n");
    return 0;
  }
  if ((iend < 1ll) | (iend > 9999999999ll))
  {
    std::printf("ERROR: end argument out of allowed range [1,9999999999]\n\n");
    return 0;
  }
  if (iend < istart)
  {
    std::printf("ERROR: end argument %" PRIi64 " less than start argument %" PRIi64 "\n\n", iend, istart);
    return 0;
  }

  int64_t istride;
  try { istride = std::stoll(argv[3]); }
  catch (const std::out_of_range &e)
  {
    std::printf("ERROR: stride argument exceeds range of int64\n\n");
    return 0;
  }
  catch (const std::invalid_argument &e)
  {
    std::printf("ERROR: could not convert stride argument to integer\n\n");
    return 0;
  }
  if (istride < 1ll)
  {
    std::printf("ERROR: stride argument must be positive\n\n");
    return 0;
  }
  if (istride > (iend - istart))
  {
    std::printf("WARNING: stride = %" PRIi64 " exceeds (end - start) = %" PRIi64 "\n", istride, iend - istart);
    std::printf("         only start = %" PRIi64 " will be evaluated.\n\n", istart);
  }

  uint64_t total_evals = 1ull + (iend - istart) / istride;
  uint64_t n_evals = 0ull;
  uint64_t print_count = 0ull;
  for (int64_t i = istart; i <= iend; i += istride)
  {
    double i_dbl = static_cast<double>(i);
    A = i_dbl;
    WHEELFAC();
    
    double product = 1.0;
    for (uint32_t j = 1u; j <= 11u; j += 1u)
    {
      if (Z_[j] == 0.0) break;
      if (Z_[j] < 0.0) std::printf("\nERROR: negative factor %.0f for input %.0f\n\n", Z_[j], i_dbl);
      if (Z_[j] != std::trunc(Z_[j])) std::printf("\nERROR: non-integer factor %.16f for input %.0f\n\n", Z_[j], i_dbl);
      if (!isPrime(static_cast<uint64_t>(Z_[j]))) std::printf("\nERROR: composite factor %.0f for input %.0f\n\n", Z_[j], i_dbl);

      for (double k = Z_[j + 11u]; k > 0.0; k = k - 1.0) product = product * Z_[j];
    }
    
    if (product != i_dbl)
    {
      std::printf("\nERROR: incorrect factorization for input %.0f\n\n", i_dbl);
      for (uint32_t j = 1u; j <= 11u; j += 1u)
      {
        if (Z_[j] == 0.0) break;
        std::printf("%.0f^%.0f\n", Z_[j], Z_[j + 11u]);
      }
    }
    
    bool sorted = true;
    for (uint32_t j = 1u; j <= 10u; j += 1u)
    {
      if (Z_[j] == 0.0) break;
      if ((Z_[j + 1u] != 0.0) & (Z_[j + 1u] <= Z_[j]))
      {
        sorted = false;
        break;
      }
    }
    
    if (!sorted)
    {
      std::printf("\nERROR: factors not sorted for input %.0f\n\n", i_dbl);
      for (uint32_t j = 1u; j <= 11u; j += 1u)
      {
        if (Z_[j] == 0.0) break;
        std::printf("%.0f^%.0f\n", Z_[j], Z_[j + 11u]);
      }
    }

    n_evals++;
    print_count++;
    if (print_count >= 10000000ull)
    {
      print_count = 0ull;
      std::printf("progress: %" PRIu64 " / %" PRIu64 "\n", n_evals, total_evals);
    }
  }

  std::printf("\nIf no errors above, it worked.\n");
  std::printf("start = %" PRIi64 ", end = %" PRIi64 ", stride = %" PRIi64 "\n\n", istart, iend, istride);
  return 0;
}

The code above, and program listings with notes and variable descriptions can be found at https://slugrustle.github.io/ and https://github.com/s.../fx-5800P_progs.

 

Edit 2018-12-12: My computer finished running the test code on 1, 2, ..., 9999999999. The algorithm worked correctly.


Edited by slugrustle, 12 December 2018 - 03:17 PM.


#6 samuelJohnson

samuelJohnson

    Newbie

  • Members
  • Pip
  • 21 posts

  • Calculators:
    casio fx-9750GII

Posted 14 December 2018 - 03:48 PM

hey guys my name is samuel does anyone want to help me create a 3d graph program in casio basic



#7 Rhodie

Rhodie

    Casio Fan

  • Members
  • PipPip
  • 35 posts

  • Calculators:
    fx9750gii upgraded to fx9860G&amp;amp;lt;br /&amp;amp;gt;EX995 Classwiz &amp;amp;lt;br /&amp;amp;gt;

Posted 22 June 2019 - 07:57 PM

I'm wondering whether there is an even faster method using indices for prime numbers...

For 60925375 it works out as 29×7^5×5^3 which means that cycling from highest factors in a list downwards would be quicker in my understanding

Edited by Rhodie, 22 June 2019 - 07:57 PM.


#8 Rhodie

Rhodie

    Casio Fan

  • Members
  • PipPip
  • 35 posts

  • Calculators:
    fx9750gii upgraded to fx9860G&amp;amp;lt;br /&amp;amp;gt;EX995 Classwiz &amp;amp;lt;br /&amp;amp;gt;

Posted 22 June 2019 - 08:52 PM

I imagine the code would begin with a list of prime numbers to divide it by (https://en.m.wikiped...f_prime_numbers)
And then as it decreases towards the next prime divisor until it finds a multiple of that prime and shoots it into a string AND variable which cycles back to the beginning again until it reaches a non divisible number with strings of prime numbers and their indices.
Join the strings together as a linear string output answer. Since the calculations do not use the display during processing, it should be fast.





Also tagged with one or more of these keywords: fx-5800P

0 user(s) are reading this topic

0 members, 0 guests, 0 anonymous users