Jump to content



Most Liked Content


#56005 We Have Been Hacked

Posted by flyingfisch on 19 November 2012 - 10:49 AM

Posted Image
  • MicroPro, Casimo, naib864 and 2 others like this


#55057 آموزش Cplua

Posted by MicroPro on 22 June 2012 - 09:36 AM

سلام دوباره به همه و بریم سراغ قسمت else.

در کد قبلی فرض کنید میخوایم اگر x منفی باشه برامون Nagative چاپ کنه. این کار رو با یک قسمت else انجام میدیم:

x = tonumber( input() )
 if x > 0 then
   print("Positive")
else
   print("Negative")
end
print("Program finished")
با اجرای برنامه بالا، اگر عددی که میدیم مثبت باشه، شرط x > 0 رو بررسی میکنه و چون درست هست Positive چاپ می‌کنه، بعد از روی قسمت else میپره تا به end مربوط به بلوک if برسه و بعد Program Finished رو چاپ میکنه. اما اگه عدد منفی باشه: شرط x > 0 رو بررسی می‌کنه، چون این دفعه این عبارت منطقی صدق نمی‌کنه، چیزای بعد از if رو اجرا نمی‌کنه بلکه نگاه می‌کنه اگر قسمت else توی برنامه داشته باشیم (که اینجا داریم)، اون بخش رو اجرا می‌کنه. پس برامون Negative رو چاپ می‌کنه و از if خارج میشه و Program Finished هم همیشه چاپ میشه.

خوب حالا اگر یه نفر عدد صفر رو وارد کنه برنامه‌ی بالا چیکار میکنه؟ خودتون امتحان کنید. میبینم که Negative چاپ میشه. چرا؟ خوب معلومه اول شرط x > 0 بررسی میشه، ولی چون 0 بزرگتر از 0 نیست، این شرط غلطه بنابراین قسمت else رو اجرا میکنه.

توی بسیاری از موارد برنامه نویسی جاهایی هست که بیشتر از دو تا انتخاب داریم. مثل این جا اگه بخوایم در صورت وارد کردن عدد 0 عبارت Zero چاپ بشه، در حقیقت توی یه تصمیم سه حالته هستیم. در این مواقع هست که پای elseif هم وسط میاد:

x = tonumber( input() )
if x > 0 then
   print("Positive")
elseif x == 0 then
   print("Zero")
else
   print("Negative")
end
print("Program finished")
برنامه‌ی بالا نشون میده که هر تعداد بخوایم میتونیم حالت‌های مختلف برای تصمیم‌گیری داشته‌باشیم. توی کد بالا عبارت elseif x == 0 then هم به عنوان یکی از بخش‌های if نوشته شده. اگر کاربر عدد صفر رو وارد کنه، اول شرط x > 0 بررسی میشه که غلط هست پس برنامه میره جلو ببینه elseif یا else نوشتیم یا نه. چون elseif رو میبینه، شرط x == 0 (بخوانید:‌اگر ایکس برابر صفر باشد) رو بررسی میکنه و میبینه صدق می‌کنه، پس عبارات بعدشو اجرا می‌کنه یعنی Zero رو نشون میده و بعد به خارج از بلوک if میره و Program Finished رو چاپ میکنه. توجه کنید که اگر 0 وارد کنیم دیگه Negative رو چاپ نمیکنه چون که در یک بلوک if فقط محتوای یک بخش if یا elseif یا else اجرا میشه، به عبارت بهتر فقط یک تصمیم میتونه گرفته بشه و بعد از اجرای اون تصمیم (که اینجا مثبت بودن یا صفر بودن یا «در غیر اینصورت» بودن هست) اجرای برنامه از بعد از end مربوط به اون بلوک if از سرگرفته میشه.

نکته‌ای که اینجا هست اینه که در چک کردن شرط «اگر ایکس برابر صفر باشد» چرا بجای یک علامت مساوی دو تا گذاشته‌ایم؟ جواب: زیرا این دو علامت با هم فرق می‌کنند. = علامت انتساب هست مثلا فلان مقدار را بریز توی x ولی == علامت منطقی تساوی هست و توی شرطها همیشه باید از == استفاده کرد و استفاده از = موجب خطا میشه.


مثال دیگه: برنامه‌ای بنویسید که نمره‌های درخشان یک دانشجو رو بگیره، اگر بین 0 تا 10 باشه عبارت Fail رو نشون بده، بین 10 تا 15 عبارت Bad و بین 15 تا 20 عبارت Good. اگر نمره بین این عددها نباشه پیغام Error رو چاپ کنه.

x = tonumber(input())
 if 0 < x and x <= 10 then
   print "Fail"
 elseif 10 < x and x <= 15 then
   print "Bad"
 elseif 15 < x and x <= 20 then
   print "Good"
 else
   print "Error"
 end
با نگاه کردن به کد بالا طرز کارشو کشف کنید. در ضمن در x <= 10 اون علامت کوچکترمساوی هست. فقط یه نکته که باید توجه کنید اینه که برای چک کردن این که x بین دو تا عدد هست مثلا اینجوری if 0 < x <= 10 then نمیتونیم بنویسیم. بلکه باید مثل بالا if 0 < x and x <= 10 بنویسیم (که then درستش هم توی ریاضیات همین هست).


مثال دیگه: برنامه بنویسید که اسم یه آدم رو بگیره که اسامی شامل ali, jack, sara, mary هست. سپس جنسیت شخص مورد نظر رو چاپ کنه.

name = input()
 if name=="ali" or name=="jack" then
   print "Male"
 else if name=="sara" or name=="mary"
   print "Female"
 else
   print "I don't know"
 end
خوب در مثال قبل‌تری and رو دیده بودید، در این مثال or رو می‌بینیم که همون معنایی رو میده که شما به ذهنتون خطور میکنه. میگه «اگر نام برابر ali باشد یا نام برابر jack باشد آنگاه...». یک اشتباه که معمولاً برنامه‌نویسهای مبتدی می‌کنند ولی ما به عنوان مدعی‌های برنامه‌نویسی نمی‌کنیم، این هست که به جای شرط بالا می‌نویسند:

if name == "ali" or "jack" then ...
عبارت بالا کاملاً اشتباه هست! اگر کسی میخواد بدونه بگه ولی در حالت عادی توضیح نمیدم که چرا اشتباهه چون اگه بخوام بگم احتمالا مثل قبل پنج تا پاراگراف توضیح مینویسم ولی همهش مبهم بنابراین...


تا حالا از عملگرهای > و < و == توی شرطها استفاده کرده بودیم ولی کل عملگرها اینها هستند:

==  مساوی
 >   بزرگتر
 <   کوچکتر
 >=  بزرگتر یا مساوی
 <=  کوچکتر یا مساوی
 ~=  نا مساوی

در ضمن if و هر بلوک دیگه رو میشه توی زبان‌های برنامه نویسی تودرتو کرد. مثال پیچیده: فرض کنید یه استاد دانشگاه میخواد نمره‌های پایان ترم دانشجوهاشو رد کنه. اگر دانشجویی قبول شده باشه استاد 2 نمره اضافی بهش میده، اما اگر دانشجویی رد شده باشه در صورتی که اون دانشجو از دانشجوهای مورد علاقه استاد یعنی ali و sara باشه بهش 5 نمره ارفاق بکنه ولی از بقیه 2 نمره کم کنه! این برنامه باید اسم دانشجو و نمره شو بگیره و نمره نهایی رو پرینت کنه

name = input("Student name:")
 grade = tonumber(input("Student grade:"))
 if grade > 10 then
   grade = grade + 2
 else
   if name=="ali" or name=="sara" then
	 grade = grade + 5
   else
	 grade = grade - 2
   end
 end
 print("Final grade is ", grade)
تو کد بالا نام و نمره رو در دو خط اول میگیریم، اگر نمره بزرگتر از 10 باشه یعنی دانشجو قبول شده باشه دو نمره به نمره اش اضافه میکنیم. اما اگر نمره اش زیر 10 باشه، در صورتی که نامش جزو نامهای مورد علاقه استاده هست 5 نمره میده و در غیر اینصورت 2 نمره هم کم میکنه و به التماس های اون‌ها توجهی نمیکنه و در آخر هم نمره‌ی نهایی رو چاپ میکنه.

همون طور که میبیند درون قسمت else اولین if،‌ یه if دیگه با else و end مربوط به خودش گذاشتیم که کاملا درست هست. (گرچه در این مثال میتونستیم اون رو به صورت elseif ادامه‌ی همون if اول بنویسیم ولی همه جا نمیشه این کار رو کرد).

تورفتگیهایی که در کد میگذاریم (مثلا محتوای اولین if را با دو space میبریم جلو و محتوای دومین if را با تعداد بیشتری فاصله میبریم جلو) در کد اختیاری هستند. ولی شدیداً توصیه میشود که آنها را بگذارید چون اگه نگذارید شش ماه بعد برگردید به کد خودتون نگاه کنید هیچی ازش نمیفهمید در صورتی که اگر تورفتگیها را رعایت کنید کد بسیار خواناتر میشه.


و اما تمرین توی خونه! برنامه ای بنویسید که مقدار a و b و c یک معادله درجه دوم به فرم ax2+bx+c=0 رو بگیره، ریشه‌های اون رو محاسبه و چاپ کنه!

راهنمایی: صورت سوال بالا برای نوشتن این برنامه کافیه، ولی خوب الگوریتم اون رو اینجا توضیح میدیم: اول a و b و c رو می‌گیریم و دلتا رو محاسبه می‌کنیم. حالا یهه if میخوایم که اگر دلتا بزرگتر از صفر باشه دو تا ریشه رو حساب کنه و نشون بده، اگر صفر باشه خوب یه ریشه داریم و اگر منفی باشه هم مثلا بگه «ریشه حقیقی ندارد». توی محاسبات هم که باید جذر دلتا رو حساب کنید از تابع math.sqrt استفاده کنید.


اگر داریم روی if اینقدر مانور میدیم علتش اینه که از پایه‌ای ترین چیزها هست و if رو بلد باشیم بلوک‌های for و while هم راحت میشن. خدا بخواد از این پایه ای ها رد بشیم سرعت جلو رفتن آموزش خیلی بالاتر میره.


جلسه بعد: for و while

  • saeed511, Ata.H.D, farahmand and 1 other like this


#63162 Vintage 1976 Casio fx-102 Scientific calculator review

Posted by MJim on 26 February 2020 - 04:59 AM

INTRODUCTION

I don't have that many truly old scientific calculators, and none using the old VFD display technology, so I was pretty interested to check out this old Casio Scientific fx-102 from 1976.  Accordingly this is one of the very first consumer calculators that had built in fraction support, which came as a bit of a surprise since I thought the fraction feature was something that came about well after the introduction of LCD based scientific calculators.

One price quoted for the fx-102 in 1976 is 23, which in todays 2020 money would equate to nearly ~149 pounds.  This was pretty cheap for a scientific calculator back then (the programmable fx-201P was 60 in 1976 which is about the cost of a fairly high end smartphone at ~388).

 

BUILD QUALITY

Well considering the age of this machine and the condition that it is in, top marks all around.  It doesn't look too far off from being new despite it's age of 40+ years.

It is however very big and bulky, and much larger than my fx-82 which was released only half a decade later.  With TN LCD displays already being in production at the time, offering lower power consumption and a smaller size, it isn't surprising that VFD displays eventually disappeared.

Front of the fx-102:

Spoiler

 

Rear of the fx-102:

Spoiler

 

 

POWER CONSUMPTION

The devices uses 4xAA batteries, and a power consumption figure of 0.4W is printed on the calculator.  However I did do a few tests using a fluke multimeter:

Power on current draw peak: ~43mA

Power off current draw peak: ~100mA (not sure why, switching off seems to draw more current).

Idle (Radians mode) displaying 0 average: 39.98mA (Min: 37.76mA, Max: 44.72mA)
Idle (Radians mode) displaying 8888 8888 88 average: 46.68mA (Min: 40.26mA, Max: 50.02mA)
Calculation current peak: ~50mA (Hard to measure without a function that works continuously).
Calculation voltage average: 5.72V (Min: 5.64V, Max: 5.95V)
Calculated peak power: 5.95V * 0.05A = 0.30W

Switching between different modes (Rad->Deg->Grad->SD) did not effect the current draw.

So I guess the 0.4W figure is fairly honest.  I can't locate a manual for the fx-102, but the fx-101 which has a 0.45W drain states a lifespan of 25 hours for alkaline batteries, but with the measured figures and the battery specs (Varta AA longlife alkaline) 30-40 hours doesn't seem all that unrealistic if the fx-102 can make use of all of the available battery capacity.


DIGITS/PRECISION

It is a 12 digit VFD, but it never seems to use the left most digit.  Normally, this calculator seems to handle up to 10 digits for both entry and accuracy.  This also means that for numbers big/small enough to require an exponent you actually only have 8 digits of precision, so a good deal of precision is lost once a number transitions to scientific notation, as the last 2 digits are lost in order to display the exponent.

Below is a list of the precision of different functions that I worked out from trial and error (the last digit will be +/-1 in most cases):
10 digits for independent memory (including M+ and M- operation)
10 digits for basic arithmetic (+,-,*,/)
10 digits for 1/x
10 digits for fractions
10 digits for DMS -> Decimal conversion

10 digits for pi constant (3.141592654)
10 digits for statistics functions

9 digits for square root
8 digits for base10 log, natural log, natural exponential, base10 exponent (Hidden 9th digit for rounding)
8 digits for trig functions: sin, cos, tan, arcsin, arccos, arctan (Hidden 9th digit for rounding)
8 digits for x^y function (2 steps, finds natural log of x, multiplies by y then finds e^(y*ln(x)) - Hidden 9th digit for rounding).

Having functions calculate with less precision than the displayable 10 digits does cause problems however.  For example, with the [x^y] function 2^32 should equal 4,294,967,296; which can also fit on the display of the fx-102 without any issue, but since only 8 digits are used, the last 2 digits are truncated returning 2^32 = 4,294,967,200.  One way to work around these problems is to avoid using x^y for any numbers greater than 8 digits, but this is rather inconvenient.  You could also break it down into smaller parts 2^24 * 2^8, but this requires not only doing the same equation twice over, but also storing the result in memory for each part and then finally multiplying the result at the end.

 

CONSTANT CALCULATION MODE

You can multiply or divide by a constant by either pressing the multiplication/division key twice in succession.  

This isn't quite as developed as later Casio models like the D-series (eg fx-100D, fx-115D, fx-991D), where you can also use add and subtract for constants (both real and complex) in addition to using [x^y] and [x^1/y] as constant functions (you specify y, and once set as constant, you can automatically execute these functions by entering for the x-value followed by [=]).  It still can be useful however:

For example if you were looking to find circumference of several circles with radius's of 1, 3 & 7.9 metres:
2×[pi] ×× {enter radius}
 6.283 185 308
1[=]
 6.283 185 308
3[=]
 18.84955592
7[.]9[=]
 49.63716393
 
Likewise, if you wished to find the radius from a given circumference of 6, 1, & pi metres:
2×[pi] ÷÷ {enter circumference}
 6.283 185 308
6[=]
 0.954 929 658
1[=]
 0.159154943
[pi]
 0.5

Only the [1/x], [Ab/c] and memory storage keys ( [MC], [MR], [M-], [M+]) can be used while remaining in constant mode.  Be aware though that if you want to store the result from a constant calculation, you need to enter the number and then press [M+] or [M-] key instead of pressing [=] then [M+]/[M-].  This saves an extra step, showing you the result in addition to storing it, but carries the disadvantage of not seeing the result first before storing it.


TIPS AND TRICKS

Use the [x^y] button instead of ln button for natural logs
The x^y function is odd in that it returns the natural log of the value for x you enter first, before you enter the value for y to complete the function.  However the natural log returned after entering x's value is of a higher 10 digit precision then the built in ln button! Since you can interrupt this calculation, use [x^y] instead of ln.  

Use the multiplication constant function for squares
Unfortunately the fx-102 is missing the squared function, and so squaring numbers is cumbersome, for example, 5^2: 5[x^y]2[=].  You can also use the constant function for multiplication and division instead: 5^2: 5××[=].

Now it's just as many key-presses to use [x^y], so you might ask why.  A good reason is that the [x^y] function has at best 8 digits of precision, while basic arithmetic operations including constant mode have 10 digits of precision (+/- 1 digit), so you get a more precise result for the same number of presses.

Alternatively, use statistics mode for squares
Switch to S.D mode, and then take advantage of the sum squared function:
5^2: 5[=][M+]
This has the advantage of requiring just 3 button presses, but since you need to switch to statistics mode, it isn't particularly practical. 

 

If however you are doing pythagorus type equations, statistics mode can actually save a bit of work, for example:

"The main tent pole in a conical tent is 3 metres high, and the radius of tent floor is 5 metres.  What is the length of the tent fabric stretching from from the tent pole to the floor?"
d = sqrt(3^2 + 5^2)

{switch to statistics mode}
3[=] 5[=] [M+]
 34
{switch to any other mode, GRAD being closest}
[sqrt]
 5.83095189
8 steps required
 
If we performed this in any other mode:
3[x^y]2[=][M+] 5[x^y]2[=][M+] [MR][sqrt]
 5.83095189
12 steps required


FRACTION FEATURE

I was already aware that Casio's fraction feature has 2 implementations, old and new.  The older version as found on my fx-100D (c1992) is only able to display fractions while all calculations are also in fraction form.  The newer version as found on my fx-991W (c1998) adds the ability to convert decimals to fractions (as long as the number of digits that make up the fraction including fraction marks don't exceed 10).

The Casio fx-102 is using a version of the older implementation, although it is restricted to only using 3 digits for each component of the fraction.  Furthermore, it is also limited to 10 digits total, including fraction marks, eg 123+45/678 (which will simplify to 123+15/226).  It does work pretty well however, so you can happily continue to add/subtract/multiply/divide in fraction form as long as doing so doesn't exceed 3 digits for any value and 8 digits total for improper fractions.

Unfortunately, this feature comes with a pretty big downside, and that is that any calculation involving fractions can not be stored in memory.  As long as any calculation has at one time made use of the fraction feature, you are unable to store that number, even if the fraction was used several calculations ago.  Since there are no brackets (or stack), this can make working with fractions problematic, as at no time can you store part of the result of an equation temporarily; for example for the equation  1/2*sin(30) + 1/4*sin(60), it is actually impossible to solve using fractions since you are unable to store the answer to the first part (1/2*sin(30)) before working on the second part.


QUICK TEARDOWN

For the age of the calculator I thought the soldering and traces were relatively neat.  There are two, single-sided PCB's, one for most of the important electronics the other for the keyboard.  Both boards are connected by several flat, copper wires.  I've opened this calculator up twice now, and these types of connectors make me rather nervous (I trashed my old SH3 fx-9750G2 by breaking something similar).  

Overhead view of the two PCB's:

Spoiler


Unfortunately while I know some basics, I'm not particular knowledgable on electronic circuits.  I don't know how VFD's (Vacuum fluorescent display) work, but a quick google suggests they need 2 different voltages, A lower voltage (3V) for the filament (heater) and a higher voltage (12V to 30V) for the segments themselves.  Since this works off 4xAA batteries I'm guessing that there is some sort of DC-DC voltage booster.  While looking at the photograph of the motherboard I noticed that there was actually a 3rd PCB just to the left of the Hitachi HD36130 CPU, my guess here would be that this is the DC-DC convertor that provides the higher voltage for the VFD display.

Main board:
Spoiler


They keyboard PCB looks fairly neatly soldered as well, although it's not hard to spot the repair that was done at some time in the past.  Pressing a button looks to short that button to ground.  There are 4 separate metal plates for the buttons, each with tabs that contact one of the 5 flat copper pads seen on the front of the keyboard PCB.  The 5th copper pad appears to connect to a metal spring which connect the metal face on the calculator to ground.  I've always wondered why older Casio calculators do this, would be interesting to get some insight.

Keyboard PCB rear:
Spoiler


Keyboard PCB front:
Spoiler
You can clearly see the 5 copper pads here.  For each button, a wire link is used as a contact surface.

Keyboard & Front cover inside:
Spoiler


Keyboard buttons and springs:
Spoiler
The same piece of sheet metal is shaped into springs for each button.  The plastic buttons use a different coloured plastic to make up the label on the button.  I've seen this on other Casio's and I guess it is pretty common for calculators, but it does seems to be a great way to provide label wear resistance.

CONCLUSION

Realistically this isn't the sort of scientific calculator I can see myself using in the modern age.  The next oldest calculator I have is the original Casio fx-82 from 1982 (6 years later), which is far more compact, much more energy efficient (0.4W vs 0.0007W, or nearly 600 times less power!) as well as adding much needed stacks in the form of parenthesis, rectangular to polar and polar to rectangular conversions, more constant operations and other functionality.  It doesn't however have the fraction key and it is slower, but considering the rate of progress with calculator technology today, it must of been crazy to witness the changes from the late 1970's to early 1980's.

While the fx-102 may not have much utility in modern times, it does still however provide an interesting insight into the evolution of some of the core Casio features that are standard on later models.  It has the same direct entry system and the early independent memory works much the same way even in modern calculators (M+/M-).  The core fraction entry and display is pretty much unchanged, though the fraction button will toggle between fraction and decimal display, rather than remaining stuck in decimal display.  The exponential button is pretty much unchanged, and the Sexagesmial conversion just added the ability to convert from Decimal back to DMS.  Finally the constant function would get a few enhancements and stick around for a little over 20 years, when it was finally mothballed with the introduction of the W-series S-VPAM models in 1998.


 


  • Tritonio, secutor and Hlib2 like this


#60412 FX-82/-83GT/-115/-991ES PLUS Hacking

Posted by SopaXorzTaker on 21 August 2016 - 05:27 PM

The following list was written by user202729 and serves as the guide to this forum thread.

 

 

 

Tutorial about ROP.

Javascript code to help with writing hackstring.

Character map image. Alternative version. Also available in the Javascript code above.

Scrolling text demonstration with video.

Calculator font.

How to enter a hackstring (991ES+) (less detailed version)

Hackstring used to dump the ROM. No longer needed now as we already have the ROM.

Datasheet contains some information about the hardware.

Hardware description: Part 1, part 2.

  * KI/KO ports (keyboard).
  * Timer: Part 1, part 2.
  * LCD screen.

Variable byte representation (no English translation this time).


High-level functions:

  * getkey

There are some outdated information about "real address" and "emulator address". Now we had the real ROM of the calculator that is not necessary.


  • flyingfisch, Viliami and user202729 like this


#60381 Casio Fx-9860G Sdk Tutorials (2016 Avaiable)

Posted by Viliami on 09 August 2016 - 06:55 AM

The Fx-9860gii SDK uses C by default (it also supports C++, SH4A and SH3 ASM), the SDK just uses the standard C with some extra functions for I/O and drawing. 

 

 

In the "fxlib.h" header file, there are a bunch of Bdisp functions, these functions deal with drawing pixels to the screen and clearing them.

e.g Bdisp_PutDisp_DD() is the function used to draw a pixel to the screen and Bdisp_AllClr_DD() is the function used to clear all the pixels from the screen.

 

There is a good tutorial created by Fez and reformatted by Helder7 about the Bdisp functions and basic I/O over here: http://www.casiopeia...php?f=20&t=1420

 

You can also download the official Casio docs on the fxlib library over here: http://edu.casio.com...greement.html#2

 

 

Here is a hello world program, most of this is auto-generated by the SDK when you create a new project:

/*****************************************************************/
/*                                                               */
/*   CASIO fx-9860G SDK Library                                  */
/*                                                               */
/*   File name : [ProjectName].c                                 */
/*                                                               */
/*   Copyright (c) 2006 CASIO COMPUTER CO., LTD.                 */
/*                                                               */
/*****************************************************************/

#include "fxlib.h"

//****************************************************************************
//  AddIn_main (Sample program main function)
//
//  param   :   isAppli   : 1 = This application is launched by MAIN MENU.
//                        : 0 = This application is launched by a strip in eACT application.
//
//              OptionNum : Strip number (0~3)
//                         (This parameter is only used when isAppli parameter is 0.)
//
//  retval  :   1 = No error / 0 = Error
//
//****************************************************************************

int AddIn_main(int isAppli, unsigned short OptionNum)
{
    Bdisp_AllClr_DDVRAM();          // clear screen
    PrintXY(1,1,"Hello World!",0);  // print "Hello World!" to the VRAM
    Bdisp_PutDisp_DD();             // copy pixels from the VRAM to the actual display
    return 1;
}




//****************************************************************************
//**************                                              ****************
//**************                 Notice!                      ****************
//**************                                              ****************
//**************  Please do not change the following source.  ****************
//**************                                              ****************
//****************************************************************************


#pragma section _BR_Size
unsigned long BR_Size;
#pragma section


#pragma section _TOP

//****************************************************************************
//  InitializeSystem
//
//  param   :   isAppli   : 1 = Application / 0 = eActivity
//              OptionNum : Option Number (only eActivity)
//
//  retval  :   1 = No error / 0 = Error
//
//****************************************************************************
int InitializeSystem(int isAppli, unsigned short OptionNum)
{
    return INIT_ADDIN_APPLICATION(isAppli, OptionNum);
}

#pragma section


As you can see from above, there is no main() function, unlike standard C our entry point to the program isn't the main() function, it is the AddIn_Main() function.


  • flyingfisch, frankmar98 and saeedgolabli like this


#59479 Casio Prizm Mandelbrot Explorer

Posted by ProgrammerNerd on 11 September 2014 - 11:41 PM

The Mandelbrot fractal is quite a sight.
Such wonder and amazement that can be found while viewing the Mandelbrot fractal can now be had on the Casio Prizm graphing calculator.
In addition this program can also be compiled for the PC assuming SDL is installed.
Just run make and it will be up and running.
There is very little difference in function between the PC version and the casio prizm version, the resolution is higher but that is it.

The controls are
Left, right, up, down moves the window in that direction
Menu key or ESC on the PC, exits to the menu or exits the program (PC)
F1 sets maximum iterations to 65535
F2 sets the maximum iterations to 224 (this is the default upon starting the program)
F3 toggles deep mode which is on by default. This means you can zoom in deeper with a slight performance hit.
I do not notice the difference
1 subtracts one from the maximum iterations
2 adds one to the maximum iterations
3 subtracts ten from the maximum iterations
4 adds ten to the maximum iterations
5 subtracts 100 from the maximum iterations
6 adds 100 to the maximum iterations
Shift zooms in
Alpha (ALT on PC) zooms out
Source code https://github.com/C...-Prizm-Explorer
Binary https://github.com/C.../mandelbrot.g3a
Screen shots (from the PC version which gets very similar output differing only in resolution).
CWM8Ekp.png
0pNWIZX.png
Anyways if you have any bug report(s), feature request(s), pull request(s), patch(es) or whatever relates to this I would be happy to hear about them.


  • MicroPro, flyingfisch and Viliami like this


#57683 Using The Sdk

Posted by preb on 10 February 2013 - 06:26 PM

There are tutorials to write programs in Casio-Basic on here. Just use the search bar to find them :)
  • MicroPro, flyingfisch and abdelrahmanmostafa like this


#57532 Introduce Yourself

Posted by flyingfisch on 04 February 2013 - 10:32 PM

Name: Daniel, just call me Hyuji.

Birthday: 15 Feb

Age: 17(For now...)

Hobbies: Biking, Video Games (RPGs), Anime & Manga, Mathematics, Computers, Music(Rap)

Where you got your username: I'm lazy so I just took some grouped letters on the keyboard, that made sense, into a username. If you look on a QWERTY keyboard, you will see the letter H-Y-U-J-I all grouped together for easy typing. My password follows a similar principal.


O.o You sure you want to say that much about your password?

Anyway, welcome to UCF!

Hope you enjoy your stay. In the meantime, Ice Cream!

Posted Image
  • MicroPro, Casimo and naib864 like this


#57387 Like Own Post

Posted by Casimo on 31 January 2013 - 04:39 PM

It is possible to like the own posts. Is this a bug or a feature? I would say bug because you can incrase your like counter this way or bump your post in the most liked - section :P .
  • Casimo, naib864 and CalcLoverHK like this


#63065 C.Basic - International Release

Posted by sentaro21 on 24 January 2020 - 11:32 AM

Hers is new updated version. ^_^
 
2.44 beta6  for for 9860G/GII series/Graph 35+USB/35+EII/75/85/95 (SD)
 
1.44 beta6 for CG10/20/50/Graph90+E.
---Common update---
-Fixed the bug that Pict file could not be saved to storage/SD. (this is 2.28 en-bug.)
-Changed spacification of the number of string variables by default to th increased to 999 by default .
 
-Fixed the bug that when the index start value of the matrix is 0, one more than the number set by '#Str '#Fn etc. is allocated.
-Fixed the bug that switching of current folder in setup.
-Fixed the number of digits including decimals to be no more than 16 when specifying Fix.
 
-Changed the specification to be possible use formulas by arguments as '#Str and '#Fn etc.
(Example) #Str <r>, N+1, A*10
 
-Fixed the bug that the return value was wrong when searching files with the wildcard in IsExist(.
(Example) IsExist ("*.Bmp")
If the file exists, return value is the number of files.
If the file does not exist, return value is 0.
 
-Added push OPTNVARS key to display alias/extended variable information in the variable display screen.
-Improved the save destination selection screen when the file name has been modified.
-Added Shift+F1F2F3 key to matrix/List/Vct selection.
-Fixed the bug that "%" could not be input with Alpha+[(-)] when one line input mode.
-Improved the version pop-up display that added build no.
-Improved the manuals. ( "Initialization of String" and "Display: Fix / Sci / Nrm / Eng" section) ( English translation supported by Krtyski )

  • CalcLoverHK and Hlib2 like this


#60636 FX-82/-83GT/-115/-991ES PLUS Hacking

Posted by flyingfisch on 04 November 2016 - 01:21 PM

Hi guys,

 

Unfortunately, we can't allow linking to copyrighted material on this forum. This is because our main source of revenue for keeping the site online is Google ads, and they have a strict policy regarding copyrighted material. I've removed the illegal links from this thread.

 

I don't think any of you intended to be malicious, so I'm not issuing any bans or warnings, just letting you guys know what's going on.

 

To clarify, pictures of PCBs, "hackstrings", and discussion about reverse engineering the calculators is still allowed, it's just the copyrighted material that isn't.

 

Thank you for your cooperation, and happy hacking! :)


  • SopaXorzTaker and user202729 like this


#60511 Conway's Game of Life fx-9750GII/9860GI/II

Posted by frankmar98 on 24 August 2016 - 10:58 AM

Hi, yesterday, I was bored and I've programmed a Conway's Game of Life port to fx-9750GII (hacked or not), fx-9860G and fx-9860GII.

 

Code in pdf from FA-124: 

https://drive.google...RDdCTHlMaXVkZkU

 

 

IMG_20160824_121031_1.jpg

 

 

It is programmed in Casio Basic 2, and I use a 20x20 matrix filled in start with random binaries. You must have at least 45min to play it and enjoy viewing how this little universe evolves.

 

It is programmed from scratch and it is very slow. If you have any idea for making it more fast, please, feel free to post

 

Installation:

  1. Create a program in the calculator
  2. Transfer it to FA-124
  3. Copy the pdf content in the program and save it.
  4. Overwrite it to the calculator

  • flyingfisch and Viliami like this


#60400 Casio Fx-9860G Sdk Tutorials (2016 Avaiable)

Posted by Viliami on 13 August 2016 - 12:22 AM

I just use the sprintf function, (which is in the stdio.h lib, also sidenote: the printXY function is from the fxlib.h lib) to convert the float into a char array and then print it to the screen.

Here is an example function:

void printFloat(int x, int y, float f){
    unsigned char buffer[9];
    sprintf(buffer, "%f", f);
    PrintXY(x,y, buffer, 0);
}

and here it is in use:

int AddIn_main(int isAppli, unsigned short OptionNum)
{
    float pi = 3.141593;            //the float we're going to print
    Bdisp_AllClr_DDVRAM();          //clear screen
    printFloat(1,1,pi);             //call the function to print the float
    Bdisp_PutDisp_DD();             //put pixels from VRAM onto the screen
    
    while(1){}
    return 1;
}

  • frankmar98 and saeedgolabli like this


#59473 Lost The Sdk D:

Posted by shinolife63 on 11 September 2014 - 09:05 PM

Ok, so this is a pretty simple thread, bassically the computer I had the 9860 sdk on died, along with the hdd, and now I cant find where I got it from casio's website.
If anyone could link me to a download (from casio or otherwise), that'd be supurb.

Thanks.


  • flyingfisch and shinolife63 like this


#59472 Nested If Statement Syntax Error

Posted by TeamFX on 11 September 2014 - 05:07 PM

Every 'If' needs an 'IfEnd' and there are quite a few missing in your program.
You can also use the conditional jump command "=>" (Shift + VARS / F3 / F3) as an 'If-Then' replacement.

Instead of writing...
If A=2
Then A+1->A
IfEnd

You write...
A=2=>A+1->A

The conditional jump command does not allow more than one statement to be executed.


  • MicroPro and shinolife63 like this


#59215 Complex Numbers Calculations

Posted by PsySc0rpi0n on 22 March 2014 - 01:00 PM

I got it...

Calculator automatically converts negative angles in their complementary values, meaning -102.7 = 257.3-360
  • MicroPro and flyingfisch like this


#58006 Howto Convert 0.4082482905 To 1/sqrt(6) ?

Posted by nsg on 03 March 2013 - 05:27 PM

Another thing you can do is to convert your mystery number into continuous fraction and look for repetitions. It is known that quadratic irrationalities have repeating continued fraction representation. For example, 1/sqrt(6)=[0;2,2,4,2,4,2,4...] (2,4 part repeats infinitely)
So, for example, if you start with approximation to 1/sqrt(6)=0.4082482905 (without knowing it is 1/sqrt(6)) and start obtaining its continued fraction elements you will get
[0; 2 2 4 2 4 2 4 2 4 2 3 19 1 16 4 2 1 2]
It is easy to suspect that [0; 2 (2 4)*] is a candidate and non-periodicity is due to inaccuracy of approximation.
Then using simple algebra you convert [0;2 (2 4)*] to a form (U+sqrt(D))/V, which is sqrt(6)/6, which is 1/sqrt(6)

Unfortunately this only works for mystery numbers in the form of (U+sqrt(D))/V. Say, sqrt(2)+sqrt(3) does not have repeating continued fraction and will need different method to guess tha form.
  • MicroPro and user202729 like this


#53505 Bode Diagram For Fx-9860g

Posted by amin_heidari on 18 December 2011 - 06:34 AM

i recently write a program to plot Bode Diagram for fx-9860g

features:
1-plot magnitude and phase
2-semi logarithmic plot
3-Generate logarithmically spaced frequency with log space function(like logspace.m in MATLAB)
4-Correct phase angles to produce smoother phase plots with unwrap function(like unwrap.m in MATLAB)
5-plot system that have Dead Time(e^(-s))


PREVIEW
Posted Image

see below link that plot a system with MATLAB and ti 89:
http://csserver.evan...bode_plots.html

i plot that system with my casio-fx 9860g(it completely look like MATLAB plot):


Posted Image
transfer function

Posted Image

Magnitude Plot from a casio fx-9860g

Posted Image

Phase Plot from a casio fx-9860g

Posted Image

Magnitude Plot from a TI-89

Posted Image

Phase Plot from a TI-89

Posted Image

Bode Plot from Octave/MATLAB (freq. in rad/s)


Email: amin_heidari66 AT yahoo.com
:rolleyes:
  • sma4t and OKKA like this


#31796 Casio Basic Tutorial

Posted by huhn_m on 28 November 2005 - 05:03 PM

Part 13: Advanced Variables

Those of you who know other programming languages have probably seen a big problem in what you have read so far, what if you need more than 28 variables in your game? A long time ago (in a calc far, far away), when I was first learning to program I was making little games like Example 1 of this tutorial. But then I started trying to make some more complex games and I ran into a problem, I needed more variables and there were none to be found! Eventually I found the answer: Lists and Matrices.

Lists – A list is exactly that, a list of variables, they can be up to 255 cells long.
Here is a visual of a list with 5 cells:
[ ]
[ ]
[ ]
[ ]
[ ]
to access a cell in a list you just use List #[#] (List 11), the first # represents the number of the list and the second represents the index of the cell. You can use Lists just like you use normal variables, anything you can do with a letter variable you can do to a list, you just have to specify what list and what cell.

Some special list functions:
X->Dim List # : creates a list with X cells in it, all cells are set to 0.
Fill(X,List #) : fills a list with X.
There are others, but you probably wont use them.

Matrices – A matrix is a two dimensional list
Here is a visual of a 5x4 matrix.
[ ][ ][ ][ ]
[ ][ ][ ][ ]
[ ][ ][ ][ ]
[ ][ ][ ][ ]
[ ][ ][ ][ ]
Matrices are just like lists except that they are two dimensional, I like to use them for maps, especially tiled maps. To use a matrix use Mat (letter A~Z)[Y,X] (Mat A[1,1]), the X and Y are reversed, make sure not to confuse them.

Special Matrix functions:
{Y,X}->Dim Mat (letter) : creates a YxX matrix
Fill(#,Mat (letter)) : fills a matrix with a #
Again, there are more, but you wont need them right now.

Tip: List and Matrices are very useful for loops, since they are indexed you can loop through them or use List 1[A] so you can change what list cell you are using dynamically. Also note that you cannot do this with the number of the list.

Return to Tutorial Index
  • PsySc0rpi0n and frankmar98 like this


#27523 Cfx Games Slow, New Drawing Method

Posted by liquid on 12 March 2005 - 01:16 AM

Hey ive been programming my fx-9750G plus for a year now and the games ive made that use graph mode never use the F-Line function as its so slow(i made these games b4 link cable so they were deleted :( srry). Im just wondering why all the other cfx games on the web out there use F-Line. Using the stats mode to plot xy line graphs from points in a list is much faster, i just cant believe no one else has thought of this in their games and programs???
for example:
This program will make a star move around screen using direction buttons(could be replaced with a man to make a rpg like game?):

ViewWindow 1,127,0,63,1,0
FuncOff
S-WindMan
S-Gph1 DrawOn,xyline,list1,list2,1,Dot
{2,10,18,1,19,1}->List 1
{19,1,19,7,7,19}->List 2
-60->A:-28->B
Lbl 0
Getkey
Ans=0=>Goto 0
Ans=38=>A+10->A
Ans=27=>A-10->A
Ans=37=>B-10->B
Ans=28=>B-10->B
ViewWindow 1+A,127+A,0,63+B,1+B,0
DrawStat
Goto 0

If u try this out you will definatly see the advantage over F-line commands.
Its fast enougth that you wont even see the lines being drawn, they just appear :)
Using the method above, u dont even have to manipilate the list data as you just change the view-window parameters to move the object across the screen. This could be put to use in moving backgrounds made up of lines, or just simple sprites like a star or man.

If u want u can also do this by manipuilating the list data and not the view-window, but this will slow down as you get images/sprites made up of lots of points, so changing the view-window parameters is best for speed :).

An example of the advantage of this method would be to draw a background/map using this, then store it as background pict, then have a man/car/whatever move around the screen using the view-window method like above. You could even rotate the man/car/whatever by manipulating the lists with polar and rec commands.

So it would be cool if authors of cfx games now use this method, or update their games so the drawing is faster.

Another note, if you want to zoom backgrounds or sprites bigger and smaller or squash or stretch them, u can edit the viewwindow parameters, then drawstat which is very fast.

Another note, dont open the programs up in casiocomm as it doesnt recognise all the commands like S-Gph1 DrawOn,xyline,list1,list2,1,Dot, so it stuffs them up when u try to send them too ur calc. Ull have to transmit it with, but not open it for text editing in casio comm.
  • Viliami and frankmar98 like this